您現在的位置是:首頁 >動態 > 2024-01-19 16:37:02 來源:
分子有理化(分子有理化的方法)
導讀 大家好,我是小夏,我來為大家解答以上問題。分子有理化,分子有理化的方法很多人還不知道,現在讓我們一起來看看吧!對于只有兩項的根式,...
大家好,我是小夏,我來為大家解答以上問題。分子有理化,分子有理化的方法很多人還不知道,現在讓我們一起來看看吧!
對于只有兩項的根式,用:
一般的,用:
1、“分子有理化”定義:對于一個分式來說,若分子是一個無理式組成的代數式,采取一些方法將其化為有理式的過程稱為分子有理化。
2、“分母有理化”:又稱"有理化分母",指的是在二次根式中分母原為無理數,而將該分母化為有理數的過程,也就是將分母中的根號化去。
3、“分子有理化”和“分母有理化”的關系:“分子有理化”就是把分子的數值表示成分數。因為分子是有理數,所以大多數情況下使用“分母有理化”。但做題的時候有時候需要將分子有理化算起來比較簡便。
擴展資料:
分子有理化的作用
1、分子有理化可以通過統一分子,實現一些在標準形式下不易進行的大小比較,有時也可以大大簡化一些乘積運算。
2、高中數學用定義證明單調性。
3、微積分極限的計算。
比較√7 -√6與√6 -√5的大小
采取分子有理化
[(√7 -√6)*(√7 +√6)]/(√7+√6)
=1/(√7 +√6) (1)
[(√6 -√5)*(√6 +√5)]/(√6+√5)
=1/(√6 +√5) (2)
現在(1)(2)兩式分子相同,分母(1) 〉(2)
所以√7 -√6 <√6 -√5
本文到此講解完畢了,希望對大家有幫助。